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We solve the one-dimensional stochastic reaction-diffusion system A + A — @ with driven diffu-
sional relaxation and hard-core particles. Fluctuations in the total density (i.e., the mth moments
(N™) of the density distribution at any time ¢ > 0) do not depend on the driving field, irrespective of
the initial condition. For random initial conditions even local density fluctuations do not depend on
the driving. A local perturbation in a random initial state evolves diffusively with a superimposed
algebraic decay in time. The effect of the driving can be absorbed in a Galilei transformation.

PACS number(s): 05.40.+j, 05.50.+q, 02.50.Ga, 82.20.Mj

Stochastic reaction-diffusion processes in one dimen-
sion have become a major field of research in recent years.
Being usually rather simple, they nevertheless show a
very rich dynamical behavior and they are of both the-
oretical [1] and experimental [2,3] relevance in the study
of far-from-equilibrium growth processes and reaction-
diffusion systems. Among the best studied systems of
this kind are the symmetric and asymmetric exclusion
process [4], allowing only for (biased) diffusion, random
sequential adsorption (RSA) [5], which is equivalent to
annihilation of pairs of particles (without any diffusion),
and Glauber dynamics [6], which at zero temperature
maps to pair annihilation with diffusional relaxation [7].
What these three models have in common is that they
all describe a system of interacting particles on a one-
dimensional lattice, where each lattice site may be occu-
pied by at most one particle. The interaction has two
components. First, it is the exclusion principle which
forbids double occupancy (a hard-core on-site repulsion)
and secondly there is a nearest neighbor interaction de-
scribing the rate of change of any of the four possible
configurations: Two vacant sites remain vacant, a single
particle may hop to the vacant site to its right or left
with rate rp = D(1 £+ n)/2, and a pair of particles may
react and annihilate with rate A:

Process Rate
AD — 0A D(1+mn)/2
DA — AD D(1—-mn)/2
AA — 00 A

Physically, the asymmetry in the left and right hopping
rates may be thought of as the result of a field driving
the particles in one preferred direction. If A = 0 this
is the asymmetric exclusion process, D = 0 corresponds
to RSA, and n = 0, A = D maps to zero temperature
Glauber dynamics [7].

The physics of these processes, however, is very differ-
ent. The symmetric exclusion process (n = A = 0) is,
at least on the level of low order local correlation func-
tions, not much different from its completely noninteract-
ing counterpart. The dynamical exponent of the system
is z = 2 and correlations decay algebraically to their sta-
tionary values. In the asymmetric case  # 0, however,
the nonlinearity arising from the interaction becomes rel-
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evant. Local inhomogeneities lead here to the evolution
of shocks [8]. The dynamical exponent for density corre-
lations in a system with finite density is z = 3/2 [9]. In
addition to that the phase diagram for both the steady
state and dynamical behavior depends crucially on the
boundary conditions imposed. Indeed, merely by chang-
ing boundary terms one may induce phase transitions
between algebraic and exponential decay of correlations
in space and time [10,11]. Other aspects which make
this model interesting are its close relationship to growth
processes, to polymers in random media, and to Burgers’
equation [12].

An essential feature of RSA (D = 0) is the existence
of jammed states, i.e., arbitrary configurations with no
pairs of particles. Such a state cannot evolve further in
time. Spatial correlations decay superexponentially [5].

Diffusion limited annihilation interpolates between
these two models. The steady state is the completely
empty lattice (if the system was at time ¢ = 0 occupied
by an even number of particles). With A = D, i.e., the
zero temperature Glauber case with biased domain wall
diffusion, the system may be described in terms of free
fermions and explicit and exact results for correlation
functions become available: For the unbiased case the
dynamical exponent for density correlations is known to
be z = 2 and time-dependent correlations decay alge-
braically to zero [7,13-15]. This model is also of inter-
est experimentally through a mapping to the coagulation
process AA — A0, OA [16,17] which describes exciton
dynamics on N(CH3),MnCl; polymers [3]. Remarkably,
the experimental exciton reaction and diffusion rates cor-
respond to the free fermion condition A = D [17]. The
density of excitons along the polymer p(t) ~ t~¥ decays
algebraically. The measured value y = 0.47(3) [3] agrees
excellently with the known theoretical prediction from
Glauber dynamics y = 0.5.

The biased case which we shall consider in this pa-
per has been studied more recently [11,18-20]. The phe-
nomenon of the boundary induced phase transition is
known to persist for dynamical correlations [11]. For the
free fermion case and with periodic boundary conditions
exact results are available for the average density and the
two-point correlation function for an initially fully occu-
pied lattice [19]. These quantities turn out to be indepen-
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dent of 7. For reaction rates A # D numerical simulations
using random initial conditions do not show significant
dependence of the behavior of the average density on the
asymmetry, even for small values of the reaction rate A
[20].

These results for the average density are not surprising
for the initial conditions considered. Because of transla-
tional invariance of both the initial state and the time
evolution operator any local effects the driving may have
are averaged over and therefore this quantity gives little
insight into fluctuation effects in the presence of spatial
inhomogeneities in the initial state. More challenging is
the observation that also density correlations do not de-
pend on the driving. Given the dramatically different
behavior of the asymmetric exclusion process (without
reaction) from the symmetric exclusion process, this is
unexpected even for an initially full lattice and needs
understanding. Unfortunately, there is no study on the
impact of the driving either for uncorrelated random ini-
tial conditions with density pg # 1 or, what is even more
interesting, for a nonhomogeneous initial distribution. It
is clearly interesting to see to what extent the nonlinear
effects known from the asymmetric exclusion process sur-
vive in the presence of the reaction and so to understand
the interplay between hard-core repulsion, driving, and
the nearest neighbor interaction. It is the aim of this
paper to address these open problems for A = D. The
reason for this choice is twofold. First, the description
in terms of free fermions allows for the explicit calcula-
tion of correlation functions. Secondly, the relationship
to the coagulation problem as discussed in [16,17] allows
for a translation of the results obtained here into results
for coagulation and therefore for further predictions for
exciton dynamics in experiments.

We define the process in terms of a master equa-
tion for the probability f(n;t) of finding, at time ¢,
any configuration n of particles in the system. Here
n = {ny,ny,--+,nr} where n; = 0,1 and 1 <7 < L
labels the sites of the lattice, and we assume periodic
boundary conditions. We shall express the time evolu-
tion given by the master equation in terms of a quantum
Hamiltonian H [21]. The advantage of this approach
is that there are standard methods of dealing with the
resulting time evolution operator H which do not arise
naturally and obviously if the master equation is written
down in standard form.

The idea is to represent each of the 2¥ possible config-
urations in X = {0,1}F by a vector |n). The prob-
ability distribution is then mapped to a state vector
[f(t)) = Dnex f(n;t)[n). The vectors |n) together
with the transposed vectors {n| form an orthonormal ba-
sis of (C?)®L and the time evolution is defined in terms
of a “Hamilton” operator H by Z|f(t)) = —H| f(t))
where H = DZle ur with the nearest neighbor reac-
tion matrices

1+n

[nk(l - Mpet1) — 5231:4»1]
1-— —
+__2__I]_ [(1 - nk)nk+1 - Sk S:+1]

+ (nenkt1 — sEsEL,) - (1)

Up =
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Here sy = (of + io})/2 annihilate and create particles,
respectively, and ng = 1/2 (1 — o) are projection opera-
tors on states with a particle on site k of the chain. Using
f(n;t) = (n| f(t)) the master equation takes the form
8 f(n;t) = —(n|H| f(t)). A state at time t = to + 7 is
therefore given in terms of an initial state at time ¢o by

| F(to+7)) =e 57| f(ta) ) - (2)

Note that (s|f(t)) = D ,cx f(n;t) = 1 where (5| =
D nex{n| which expresses conservation of probability
and which implies (s|H = 0. Expectation values
(ng, -+ -ngy ) of the local occupation numbers ny = 0,1
are given by the matrix elements (s|ng, - - ngy| f(t))-
The master equation is solved either if (2) is solved
for any | f(0)) or, alternatively, if one solves ng(t) =
exp (Ht)ny exp (—Ht).

One problem of physical interest is posed by the time
evolution of uncorrelated random initial conditions with
average density p, i.e., averages over all initial states
where each N-particle configuration is weighted by the
factor (1 — p)X~Np". Such an initial state is represented
by the tensor product |p) = |p)®L with the column vec-
tor |p) = (1 — p,p)T. Another interesting quantity is
the time-dependent fluctuation in the total density for
arbitrary initial states, i.e., the moments (N™(¢t))/L™ of
the density distribution where N = Y, nj is the number
operator.

Without actually solving anything we can already de-
rive two important results by noting the following. The
Hamiltonian may be written H = H, + nH, where the
driving part Hy is given by Hy = —D/2 Ele(s,:s;:_‘_l —
s¢8xy1) and H, is the Hamiltonian for the system
without driving. It is easy to check that [Hy, H;] =
[Hg, N] = 0 which immediately implies N™(t) =
exp (Ht)N™ exp (—Ht) = exp (H,;t)N™exp (—H,t). In
other words, the time evolution of the density fluctua-
tions does not depend on the driving, irrespective of the
initial condition. Secondly, since (1—p)s} —p(1—ng)|p) =
ps, — (1 — p)ng|p) = 0 one has Hgylp) = 0. This im-
plies |p(t)) = exp (—Ht)|p) = exp (—Hst)|p). Thus local
density fluctuations (ng, (t) - - ng, () ) at time ¢ do not
depend on the driving if random initial conditions with
arbitrary density p are taken. Studying these quantities
for the driven case gives nothing new compared to the
same quantities for the undriven system [22]. This gen-
eralizes the results of Ref. [19].

In order to see what effect the driving actually has
we study the time evolution of the local density pi(t) =
(nk(t)) for arbitrary initial conditions [23]. We define

k z
Il;_, 07 and perform a Jordan-

Wigner transformation al = 8, Qr—1, ar = Qk—18:

[24]. These operators satisfy the anticommutation re-
lations {ax, 2} = {al,al} = 0 and {a},a;} = 6x,. Note
that because of the periodic boundary conditions for the
Pauli matrices one has azﬂ = aIQL and ap4+; = Qras.
Qr may be written Q@ = (—1)V where N = 3 ny, is the
number operator. Since by the action of H the particle
number changes only in units of 2, Q commutes with H
and splits it into a sector with an even number of parti-

the operator Qi =
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cles (Qr = +1) and into a sector with an odd number of
particles (Qr = —1). For definiteness we study only the
even sector and assume also L to be even.

It is useful to introduce the Fourier transforms

L 2mikp
Z T, ®3)

k=1
et I an "
Z (4)

satisfying {bp,bq} = {bz,,b;} = 0 and {b;r,,bq} = bpq-
Thus the representation of the number operator in
Fourier space is

_ % Z ezvrik(p—P')/Lb;f)bp, . (5)

p,p’

AH

'U—"

Here the sum runs over all integers p = 0,...,L — 1 in
the sector with an odd number of particles and over the
half odd integers p = 1/2,3/2,...,L — 1/2 in the even
sector. The Hamiltonian now reads

27p 2mp
H.s = Z{(l“‘cos T) btb + sin —— L b_PbP}’ (6)
P
H,; = —iZmn@bTb . (7)

p

Using this form of H shows that b;f,(t) and by(t) satisfy
a set of only two coupled differential equations,

B 53(0) = [H,63(0) = epb}(t) + 250 <2”Tp>b_,,(t), (8)

d
Zby(t) =

solved by

b;(t) = e°pt [b;‘7 + cot (%) (1 — e"(€P+E“P)t) b,p] , (10)
bp(t) = e 'by, (11)

[H,bp(t)] = —epbp(2), (9)

with bL(O) = b;f,, bp(0) = by, and

21p L. 27p
€p =1 —cos I ) ~wmsin{ 4 ).

This together with (5) gives ni(t) and, with specified ini-
tial conditions, any time-dependent correlation function
at time ¢ in terms of correlators at time ¢t = 0.

For a study of the density profile (ng(t)) it is conve-
nient to compute its Fourier transform

(12)

L

S(q, t) — % Z ez”ikq/L(nk(t»

k=1

= LZ e~ (cortersalt cot (Z2) (byprgb_p)  (13)

where we have used (s|[b}, + cot (mp/L)b_,] = 0 [25]. For
the calculation of the zero time correlator (by4qb_p) one
may further use
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(bp+qb—p) = (14)

% Z(ak,l — apk)(neQrQi—1m)

k<l

with ar; = exp{2ni[(k — l)p + kq]/L}. This gives the
general solution for the average density at time ¢ for an
arbitrary initial state.

As discussed above, for a random initial condition with
initial density po the local density [equal to the global
density p(t) = (N(t))/L because of translational invari-
ance| does not depend on the driving . This in turn
implies that for long times it will not depend on pg ei-
ther [7]. We study therefore the time evolution of a local
perturbation in a random initial distribution, i.e., we con-
sider the initial state ny|po)/po which is a random initial
configuration where one finds a particle with probability
po # 0,1 everywhere in the lattice except on site L where
one has a particle with probability 1. This means that
we study the quantity (s|niexp(—Ht)nr|p) which may
also be interpreted as a two-time density-density correla-
tion function (ng(t)nz|(0)), with an uncorrelated homo-
geneous initial state of density p. For technical simplicity
we consider po = 1/2 and project out the contributions
with an odd number of particles, i.e., strictly speaking
we consider the initial state (1 + Qr)nL|po = 1/2). The
zero time correlation function (14) is then given by

| k41 — Ok,101,0-1)/4 (1 #L)

(@i Qi-am) = { (0k, -1+ 0k,1)/4 (I =L).
(15)

This gives

5 27T_p —(1—cos2np/L)t
S(g,t) = 2= 2L <1+cos 7 )e
g (1 HE0)

(16)

In the first part of the sum one recognizes the known av-
erage density [14] at time t and the second part AS(g,t)
gives the time evolution of the perturbation. By tak-
ing the limit ¢ — oo, L — oo with t/L? fixed one may
derive the finite-size scaling form of S(g,t). In the in-
finite volume limit L — oo (with ¢ fixed) one finds for

Api(t) = pr(t) — p(t)

1

2 . .
Apk( ) %/ ] e—21(kq~7)tsmq)
2

e~ 2 [Io(2 cos gt) — I5(2 cos qt)] dg (17)
where I,(x) are the modified Bessel functions of the first
kind. This results shows that the effect of the driving can
be completely absorbed in a lattice Galilei transformation
[26], there is no evolution of shock waves. The dynamical
exponent of the system remains z = 2 as in the absence
of driving. In the scaling limit ¢ — oo,k — oo with k2/t
fixed (17) becomes

Api(t) = —ge (kmmt'/t,

4mt2 (18)
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representing a diffusive nature of the time evolution with
a superimposed algebraic decay of the amplitude.

To conclude, we have studied the effect of driving in
a simple reaction-diffusion system where exclusion parti-
cles hop with rates (1£7)/2 to the right and left, respec-
tively, if the nearest neighbor sites are empty and which
are annihilated in pairs with rate 1 if the nearest neighbor
site is occupied. We obtained the following results. (1)
Fluctuations in the total particle number as a function of
time do not depend on the driving parameter 7, regard-
less of the initial condition. (2) Local time-dependent
density fluctuations (ng, - - ng,) do not depend on 7 if
uncorrelated random initial conditions have been taken.
(3) In the scaling regime the effect of the driving on a
local perturbation in a random initial state can be com-
pletely absorbed in a Galilei transformation; there is no
evolution of shocks. (4) The time evolution of such a
perturbation is diffusive, but with a faster decay of the
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amplitude (x t~2 rather than oc t=1/2). These results
have been obtained for annihilation rate A = 1. It would
be very interesting to study the system for other values
of A in order to understand the transition to the limiting
cases A = 0 (where the behavior of the system is dom-
inated by the evolution of shocks) and A = oo (where
jammed states play an essential role). It may be worth-
while pointing out that our results indicate that it is not
the exclusion principle as such which is responsible for
the behavior of the system, but the strength of the pair
interaction between neighboring particles. The gener-
alization of these results to other initial conditions and
average values are discussed elsewhere [25].

This work was supported by a grant of the European
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